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J. Phys. A :  Gen. Phys., 1971, Vol. 4. Printed in Great Britain 

Renormalization of nonpolynomial Lagrangians 

B. W. KECK and J. G. TAYLOR 
Department of Physics, University of Southampton, Southampton, England 
MS. received 7th December 1970 

Abstract. With Chiral Lagrangians in mind, we study Lagrangians whose 
Dyson index is non-negative, for which the problem is the removal of the 
ultraviolet divergencies that remain after the usual resummation over the 
minor coupling constant. We have shown that for any rational interaction 
Lagrangian without derivatives and of Dyson index less than four, these diver- 
gences may be removed in all orders by local counter-terms. This is a special 
case of a more general result, namely that the method of local counter-terms 
works if = gP + 2np, where 2, is a polynomial of Dyson index less 
than four and g,, is a nonpolynomial for which the resummation leaves no 
divergences. We present the counter-terms explicitly after resummation over 
the minor coupling constant. 

1. Introduction 
There has been a great deal of interest recently in the use of nonpolynomial 

Lagrangians in quantum field theory. This stems from the nonlinear representations 
of chiral groups, such as SU(2) x SU(2) or SU(3) x SU(3)-see, for example, Geffen 
and Gasiorowicz (1969) and references therein-and from the nonpolynomial 
forms of weak interactions and general relativity (Delbourgo et al. unpublishedt). 
Initial calculations for the chiral case have been made only in the tree approximation, 
and coincide with the current algebra results. Our interest is in what can be said 
about such nonpolynomial Lagrangians when closed loops are included. In  other 
words we wish to take these nonpolynomial Lagrangians seriously as models of 
quantum field theory. The main problem facing such an approach is that of ultra- 
violet divergences, and in particular their removal by some type of renormalization. 

The usual perturbation solution of such problems is hopelessly inadequate in 
the nonpolynomial case, since expansion of the interaction Lagrangian in powers of 
the field variables will generate highly non-renormalizable interactions ; these will 
then produce arbitrarily high divergences in S-matrix elements. It is certainly possible 
to regularize such series term by term (Steinmann 1964, 1966), but at the expense 
of introducing an infinite number of arbitrary constants. Instead of doing this, 
attempts have recently been made to regularize the sum of the series directly, either 
by avoiding the initial perturbation expansion of the interaction Lagrangian or by 
suitable resummation methods (Efimov unpublished, Okubo 1954, Fradkin 1963, 
Volkov 1969 and references therein, Salam 1970). When the series are divergent, 
formal sums have been used. 

It is not yet certain that the results of such manipulation have physical content. 
Unitarity has been investigated, and verified for a particular case (I'olkov 1968), 
as has the appropriate analyticity for another (Lee and Zumino 1969). 
Asymptotic behaviour has also been investigated for scalar interactions (Strathdee and 
Salam 1970), and the dipole asymptotic behaviour of the nucleon electromagnetic 
form factor shown to be valid for chiral SU(2)x SU(2) (Martin and Taylor 

7 Delbourgo, R., Salam, A . ,  and Strathdee, J., Infinities in Einstein's Gravitational Theory, 
Imperial College preprint ICTP/69/28. 

I -1 44 1 



442 B. W. Keck and J .  G. Taylor 

1970). However, the field theories being discussed appear, in general, to be outside 
the class of localizable fields considered by Jaffe (1966, 1967); this means that the 
usual properties of analyticity, TCP, spin and statistics, etc., need no longer be valid. 
However, recent attempts have been made to repair this damage (Steinmann un- 
published,? Taylor unpublished:); in particular one of us (J.G.T.) has shown that 
rational functions of the free field can be included in a theory of nonlocalizable fields 
for which the majority of the results for localizable fields can, in fact, be derived. 
However, for this approach to apply it is necessary that the Wightman functions of 
the theory be the limits, in a suitable sense, of those arising from localizable fields. 
I t  is not at all evident that the approach is valid for the nonpolynomial Lagrangians 
we consider here; provided they are always constructed from local products of field 
operators there is a chance that it may. 

We will proceed here to discuss the renormalization of these nonpolynomial 
Lagrangians. This is a necessary part of the program of making sense of these 
models, and is essential in order to understand their physical predictions. Chiral 
Lagrangians are typically rational functions of the fields and their derivatives, and 
for simplicity we will only consider here interactions which are rational functions of 
the fields. We will also restrict ourselves to neutral spinless isoscalar particles. For 
this case the simplest rational nonpolynomial Lagrangian is g( 1 + A+)-l .  Since any 
rational function of the field + can by means of partial fractions be expressed as a 
sum of such terms plus a polynomial, we need initially only consider the interaction 
P(d) +g( 1 + A+)-1, for some polynomial P. Recent conjectures by Salam and co- 
workers (Salam 1970) have been made to the effect that such theories are renormaliz- 
able by addition of suitable counter terms, if the degree of the polynomial P is less 
than four, and a conjectured form of these counter terms has been given in a more 
recent work (Delbourgo et al. unpublished§). However, the justification given there 
is incomplete in several aspects. 

We give here a complete discussion of the various problems which arise in this 
situation, in particular showing how nonlocal divergent terms are correctly cancelled 
by suitable counter-terms. We extend our discussion to give the counter-terms for 
the more general case of a rational function for which the numerator has degree at 
most three more than the denominator, and conclude with a brief discussion of the 
case when this is no longer true. 

2. Resummation methods 
We consider first the interaction Lagrangian 

Z i n t  

We use the method of Bore1 summation, 

2 ann!  by 

P = -- 
1 +A+’ 

that is, of replacing 

/ d t e - t 2  antn 
m 

n d 0  n 

i Steinmann, O., 1970, Scattering formalism for Non-localisable fields, S.I.N., Zurich 

$ Taylor, J. G., 1969, Local Commutaticity for non-localisable fields, University of 

S Delbourgo, R., Koller, K., and Salam, A., Renormalization of Rational Lagrangians, 
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where free interchange of integration and summation has been effected. This turns 
out to be equivalent to replacing the interaction Lagrangian (1) by 

g.i," dtexp(-t(l+A$)}. (2) 

T h e  essential point is the appearance of the field in (2) linearly in the exponent. 
This has been used previously by Efimov (unpublished), but by means of Fourier 
transforms. This method has the disadvantage that ultraviolet divergences are not 
automatically damped out, as they will be by the use of the representation (2). 

The S-matrix is, using Hori's (1952) formula, 

S = exp &-A- exp(iLf(4)) i :+ 23 
N N 

NBO 
where 

N N  

Sk(:) = [ dt exp( - ti( 1 + AP$~)} n exp(A2titjAti) 

( 3 )  

(4) 

and we are using the abbreviations 

N 

x = (31, * * ' ?  X N ) ,  4i = 4(xJ ,  & I  = . l (x;-x,)  = <+(xi)b(X,)>+o. 

There is a certain degree of ambiguity in the definition of the skeleton function 
Sk(X) in (4) due to the divergence of the function A(x) as x + O .  This problem 
may be resolved by means of Fourier transforms, as has been shown by Volkov 
(1968). We will stay in coordinate space by an alternative approach; we rotate the 
contours of integration for the variables ti by a common angle 0. Provided that 
cos 0 > 0, cos 28 < 0, or 7/4 < 101 < 5-12, then we have the exponential factors 
exp( - ti) still produce damping, whilst the singular term in the exponent, ttt,.ltf, 
has real part cos 20 ttt3AL3, where the t, are still real. This is negative for the 
Euclidean region, since there all the At,  are positive (independently of the mass m 
of the meson). Thus the skeleton functions have no ultraviolet divergences. JTe 
define the functions in the Lorentz region by analytic continuation, for example by 
means of their Fourier transforms, following Volkov (1968). There is still an am- 
biguity, since the rotation can be through either a common positive or negative 
angle 0 ; we map add together the two resulting continuations, multiplied by arbitrary 
constants. Unitarity reduces the resulting arbitrariness a little (Strathdee and Salam 
unpublished, Volkov 1968) ; we will not consider that further here. 

We now turn to the case of a general rational function of 4, which may be mritten 
as 

IY 

where P(+) is a polynomial in 4, and A,, A, are constants. We only consider single 



444 B. W. Keck and J .  G. Taylor 

powers of (1 + A,+)-', since higher powers of this term may be expressed by means 
of derivatives with respect to A, acting on it. We may consider, then, that gInt is a 
sum of a polynomial and a nonpolynomial part; we can draw the general Feynman 
diagram resulting from this separation as in figure 1. This is described precisely by 
the factorization theorem proved in Appendix 1, 

where Snp(+) is derived by using the expression (3) with Y(+) replaced by 

and Sp(4) by using gP (+). 
We may expand Snp(+) in a form similar to the skeletal expansion (4), where now 

there are mixed terms, with the skeletal vertices x i  in (5) being associated with the 

v e r t i c e s  v e r t i c e s  

Figure 1. The separation of the polynomial and nonpolynomial vertices in a 
general Feynman diagram, giving a graphical form of the factorization expression 

of equation (6). 

various terms in the expansion of ( 7 ) .  We thus have to associate with each vertex xi an 
integer n, specifying that term in ( 7 )  which is used at this vertex, and so the skeletal 
contribution becomes 

where the summation is over all possible choices of integers n, from the set entering 
on the right hand side of (7) .  The rotation of the contours of integration over the 
variables t ,  to obtain a well defined function in the euclidean coordinate region goes 
as before, though with angles of rotation depending upon which term in the sum- 
mation is chosen in (8) and on the variable ti being considered. Specifically the angle 
of rotation e1 for the integration over t ,  in a given term in the sum (8) must satisfy the 
condition 

for any pair i, j ,  where K, is the phase of A, . This cannot be satisfied in general, but 
can for the simplest case when the constants An are real, when 7714 < 6, < v i2  if Ant 
is positive and -714 > 0, > -n i2 if A,? is negative. There is still the problem, as 
before, of continuation from the Euclidean to the Lorentz region; we may still 
achieve this, say, by going to momentum space. This will again ensure correct 
analyticity, and most likely correct discontinuities across physical cuts, though will 
produce nonlocalizable fields as in the earlier case (Steinmann unpublished). 

l X z +  i(j +e,+ e,(  < 7i le,[ <.rr/2 (9) 
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This will also allow the nonpolynomial part of the nonlinear U model to be made 
convergent. The  more general case when the contours of integration cannot be 
defined rotated to satisfy (9) may still possibly be defined by an extension of 
Volkov’s (1968) method to the many-variable case. 

3. The divergences 
Let us consider how divergences may arise when we have the interaction 

Lagrangian gint = 2?,+2’,,. We will assume that the S matrix arising from LZnP 
by the methods of the last section contains no ultraviolet divergences after resum- 
mation in the minor coupling constants A,. Our further discussion will, in fact, be 
independent of the explicit form of Znp, except for certain points which we will 
specify later. The ultraviolet divergences which we wish to consider arise from the 
powers of the propagator occurring in S,($+A8/6#). We can see how this occurs 
graphically by realizing that the action of S,($+ AS/$#) is obtained by drawing all 
the perturbation graphs for the polynomial interaction 9, and interpreting each 
external line as ($+ A6/6#). Thus the divergences inherent in 9, will be present, as 
well as new ones caused by the action of the powers of AS/&$ which are present. The  
former divergences can only be subtracted with a finite number of counter terms if 
the degree of the polynomial P(#) is no more than four. We will restrict ourselves in 
the following to the case when this degree is three (the case of degree two is very 
similar) ; we will give a brief discussion in 4 4 when this degree is four. 

We thus consider 
s i n t  = .&3 + grip(#)* 

T o  zeroth order in 2’np we have that the S-operator is 

We include the counter-terms necessary to eliminate the divergences of Sp(4) ; these 
terms remove the mass and vacuum divergences. So hereafter S,(#) is the re- 
normalized g#3 - S operator. T o  first order in g,, we have 

We consider the operator S,(++ A8/8$)2’np($) 1 d,  where $o = $(xo). We represent 
this in figure 2, where the ringed dot (the skeleton vertex) denotes 9,,(4(xO)), the 

Figure 2. The contribution to the S-operator to first order in the nonpolynomial 
Lagrangian S,,. The ringed dot 0 denotes the operator 2’np($o), where 

+o = r$(xo) and xo is the position of the nonpolynomial vertex. 

( U )  ( b  1 
Figure 3 .  The simplest divergent graphs to first ordering,,,. (a) is a generalized 
self-energy, whilst (b)  is a generalized vacuum, graph. Their explicit contribu- 

tions are given by equation (9) for (a) and (10) for (b). 
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blob is a renormalized +3-diagram, and the lines to the skeleton vertex each have a 
factor d/d+(xo) = T o  as well as the usual propagator A. The simplest divergent graphs 
of this form are shown in figures 3(a) and (6). We are interested in whether or not 
such contributions to the S operator give divergences involving the field + at points 
other than the skeletal vertex xo. If they don’t we say that the divergences are local; 
otherwise we have nonlocal divergences. In  the case of the graph of figure 3(a) the 
divergence is local, which can be seen as follows. We introduce a Pauli-\Wars 
regularization of A(.), so that if Ri’ denotes the regularizing mass, the regularized 
propagator A(M, x) satisfies 

A(M,  x ) ~  = A(fV)S4(~) + Af2(iM, 3) 

where Af2(M, x) is a respectable distribution in x and remains so as A4 + so, whilst 
A(M) behaves as log iM for large -44. Dropping the M for brevity, we have that the 
operator contribution of figure 3(a) is, with to = d/d+,, 

Evidently the divergence in this, the first term on the right of (9), is local. For the 
contribution described by figure 3(b) we have 

ig (. dx ~ ( x  - x0)3 t039np(~o)  = ig(J dx ~ x ) ~ ) t ~ 3 . ~ , ~ ( 4 ~ ) .  

The next order in g includes contributions described by figures 4(a) and (b).  Both 

(U’) (6) 
Figure 4. The simplest nonlocal divergences to first order in Znp, with values 

given by equation (10) for figure (a) and (11) for figure (b) .  

of these give nonlocal divergences, that from figure 4(a)  being 

- 9 g 2 ~ + ,  J dx +(x) ~ f ~ ( x  - x0)t42n,(+o> (10) 

and that from figure 4(b)  being 

- 18g2A f dx +(XI ~ i 2 ( x - x o ) ~ 3 ~ n p ( + o > *  ill) 
Higher order terms in powers of g will also have nonlocal divergences, as will those 
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arising from higher orders in gnP (where here nonlocality is with respect to the whole 
set of skeletal vertices). There are also new types of divergences entering in higher 
orders in ZnP; one of these is shown in figure 5. 

Figure 5 .  One of the divergences entering to second order i n 2 P , p .  

The degree of the new divergences is logarithmic when there is one free line 
carrying an operator +, whilst it is at most quadratic when there are no free lines in the 
polynomial part of the diagrams. We may thus regard the logarithmic divergences 
as contributing to an effective ‘self-energy’ contribution, the quadratic divergences 
to an effective vacuum amplitude. Let us now turn to see how these divergences 
may be removed. 

4. Counter-terms 
We wish to introduce counter-terms which remove the divergences, though we 

restrict these terms to be local ones. In  other words we have to ensure that the 
nonlocal divergences generated by the total Lagrangian cancel amongst each other. 
T o  cancel the lowest order divergences in figures 3(a) and ( b )  we only need to add the 
counter-terms 

where B = J dx(~I (x) )~ .  We have now to show that these counter-terms remove the 
nonlocal divergences (10) and (1 1) ; indeed both of these nonlocal terms are removed 
by taking one power of g from S,(#+ AS,/S+) together with the first counter term in 
(12) to  give 

- 3gA+0t02~np(+0)  -gBto3gnp(+0) (12) 

9g2A+0 1 dx sf2(x - x o ) t o 4 2 n p ( + 0 )  + 18g2A J dx 1f2(x  - ~ 0 ) t 0 3 ~ n p ( + O ) .  

This may be repeated in higher orders in g, provided suitable local counter terms are 
introduced. In  order for this to go through simply in higher orders, it is necessary 
that the counter terms have the form of functions of +o and to acting on 9nD(+O). 
In  order to make this cancellation more precise we may proceed as follows. 

We begin by classifying all the logarithmic divergences attached to a single 
skeletal vertex and with one external line. Of these we only consider those which are 
obtained by constant reinsertions of the second order self-energy graph which has the 
skeletal vertex as one of its vertices. We consider these graphs because the process of 
taking the divergent part of the second order self-energy graph causes all these graphs 
to collapse down to the skeletal vertex; they all give local divergences which have to 
be taken account of by separate counter terms. We also have to show that the nonlocal 
divergences generated when subdivergences of such graphs are considered are correctly 
cancelled by these new counter terms. We denote the sum of all such graphs as G(x) 
(where we drop the dependence of G on the skeletal vertex xo and on E o ) .  G is 
denoted graphically in figure 6, and includes as a typical graph that shown in figure 7. 

X .  I I 

Figure 6 .  Graphical notation for the total contribution G(x) from all generalized 
self-energy graphs associated with a given vertex. 



448 B. 74’. Keck and J. G. Taylor 

Figure 7. A typical generalized self-energy graph giving a contribution to G(x). 

We may sum up all these graphical contributions to obtain a nonlinear integral 
equation for G(x) : 

G(x) = 3igtO2 h2(x  - xo) + 6igto J dy h(x - xo) h ( x  -y)G(y) 

We show in Appendix 2 that the solution to this equation is 

G(x) = Boa4@ - ~ 0 )  + 2 FnCx>Mto + Bdnznp(40) (14) 
n 2 2  

where Bo = to2n,2(igfo)nAn, A, is the coefficient of ~(x-x,) in the locally divergent 
part of the sum of the nth order graphs, and F,(x) is the finite part of the sum of the 
nth order graphs. At this point we might introduce the counter terms -r$oBo9np(+O) 
to eliminate the local divergences, but these would not eliminate the nonlocal 
divergences which were described earlier. 

Figure 8. One of the enlarged set of graphs which have to be considered in order 
that there is cancellation of nonlocal divergences associated with a given skeletal 

vertex. 

T o  achieve such a cancellation we enlarge the class of graphs by including 
II;=,G(x,), as shown in figure 8. These contributions may be summed over n to 

Introducing the normal-order symbol : : by 
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we may write (15) as 

: exp(+oBo) : ( E o  +Bo) = t o  : exp(4oBo) : 

exp($F(to)) : ~xP(#JOBO) : gnp(+O) I & = @ *  
shows that the total contribution from the graphs of figure 8 is then 

We may now introduce the counter terms by replacing LPn,(q3) by 

where 
I(+, Ognp(+) 

I(+, f )  = { : exp(+B) : }-' 
= l-+B-&+2B2+(+B)2+ ... . 

Then the contribution (16) reduces to 

exp($J'(Eo))~np(+o) l i  = d 

so that both local and nonlocal divergences are cancelled by local counter-terms. 
The  second group of divergences are among those graphs without external lines 

except those coming from the skeletal vertex. We can lump these together into an 
infinite series in g with infinite coefficients, which we denote by C[fo).  These arise 
from the graphs like those of figure 9 on summation over n. If we sum the graphs of 

1 

Figure 9. One of the enlarged set of generalized vacuum graphs associated with a 
skeletal vertex, and whose sum has contribution C(&. 

Figure 10. Further enlarged set of graphs with n vacuum graphs and nt self- 
energy graphs associated with a given skeletal vertex. 

figure 10 over n and m we obtain the contribution 
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so that the previous total nonpolynomial Lagrangian (17) must be modified tc 

W O )  - 4 + 0  9 Eo)-%,(+o) (18) 
This now includes all the counter terms that are necessary. Hereafter we ignore the 
parts that give C(to) ,  for simplicity (they may be easily included). We consider how 
the total Lagrangian (18) removes all divergences. 

We consider first the removal of all divergences to first order in ZnD. R e  draR 
any graph with +3 vertices, none of whose +3 vertices has more than one line joined 
to the skeletal vertex xo (so including, among others, all those considered so far). 
Then the effect of incorporating the excluded graphs is to dress each of the lines 
joined to the skeletal vertex by adding to each propagator A(x-xo) the term 
-(A(% - y)G(y)  dy. Then if the original graphical contribution was 

N h' 

J d i ~ ( + ,  X) ~ ( x t - x o )  t o " z n p ( + o )  
i = 1  

N 
where the 4 dependence of G(+, X )  allows external legs to be taken account of, the 
corrected contribution, also taking account of the counter terms in (18), is 

N N hr 

J d X  G(+, x> 17 {4(xt - xo)(to + Bo) + AF*(to +Bo)) 
1 = 1  

where 

h F i ( f )  = C dx h ( x ,  - x)F,(x- x0)(3ifg)". 
n 2 2  

If we place exp(+,B) to the left we may change it to:  exp(4,B0): and then move it 
to the right, changing (Eo+B0) to to till we reach I (do,  E o ) ,  with which it cancels, 
leaving the finite contribution 

N 

T o  second order in Znp, we show that the same counter terms are sufficient to 
remove divergences. We have the divergences generated as before on each skeletal 
vertex separately, to which we must add those arising from lines joining the two 

n ,  t i m e s  
I 

x2 

n t i m e s  3 
Figure 11. The general type of graph involving divergences associated with one 
or other or both of two skeletal vertices; the sum of these contributions over 

nl, ..., nj is given by equation (20). 
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skeletal vertices. Thus we have to sum the graphs of figure 11 over the integers 
n,, ..., n5, with suitable combinatorial coefficients. The  result of this may be shown 
to be 

where G,(x) is the value of G(x) with respect to the ith skeletal vertex, and these are 
taken to be at x, and x2. We may rewrite (20) as 

where 

[FG112 = 1 F(x1 - Y R Y  - x2) dY. 

If we replace exp(#,B,) by :exp(4,Bt): at the front of (21) we may pull it through, 
using the same technique as for the single vertex, to obtain 

“.P{$F,(&) + $F2(t2) + tl[AF(t2)112 + t2[Awi)112 + [F(tl)AF(t2>112 + A12tlt2) 

But exp( - hl2t1t2) exp{3(6/8$)hS/8+} = 1 when operating on functions of dl and 42 
only, and then we may use the cancellation process described on the single vertex, to 
obtain finally the convergent expression 

exp{$F1(tl) + $F2(t2) + tJAF(t2)112 + t2[hF(t1)112 + [F(t1W(t2)I12} 

x Sk(x1, x2)]$,=6. (23 ) 
We may use exactly the same technique to show how the contribution from any 
graph may also be cancelled to second order in znp; since this proceeds almost 
identically to the discussion given for first order in -EPn, we will not consider it 
further here. 

We may also extend the above discussion to the case of general order in Znp; 
since it is almost identical to the above case of second order we only quote the result. 
The total contribution to the Nth  order in ,EPnp is obtained by summing only over 
43-graphs which have no vertices with more than one line joined to the skeletal 
vertices at x,, ..., xv. If such a graph gives a contribution 



45 2 B. W. Keck and J.  G. Taylor 

then its dressed contribution, with counter-terms removing the divergences, will be 
the finite term 

M 1M N 

J ~ Y G ( + ,  Y >  17{A<Yi-x~)Sj+AFi(Si)} e x ~ ( # ~ ( t j ) )  s~(x)I ,=,* (24) 
L i  

The  total contribution to all orders in g and Nth order in Sf,, is then obtained by 
summing the contribution (24) over such reduced graphs G. 

One important remark is that it is necessary to show that the terms involving 
f,[hF((,)],, or [F((l)AF(S2)]12 in the exponential in (23) produce no further 
divergences when they are expanded; apparently they do, as the function F((,) 
behaves as a 8 function in its space-time variables. However, each of these terms 
involves AI, always multiplied by t1t2. But 

E l f 2  Sk(l > 2 )  = jm dtl jm dt2t1t2g(t1)g(t2) exp(t,#, f t 2 h  -!- t 1 t241d  
0 0 

where 2?nG(+) = 
behave like (A,,8/2Al2) acting on the skeleton, so cannot produce new divergences. 

dt g(t)exp(t+). Thus these potentially dangerous terms always 

5. Discussion 
We would like to stress at this point that the enumeration of divergences, and their 

removal, described in the previous section is independent of the detailed form of 
Sn ; the nonpolynomial Lagrangian, including the counter terms is 

where I and C are independent of Snp, and in the expressions for the finite parts of 
order N in g we have functions of d/d+,, i = 1, ..., AT, independent of grip, acting 
on the skeleton operator Sk(X) appropriate to -Eanp(+). I n  order that the final results 
be convergent it is necessary that the skeletons are suitably well defined, and possess 
no ultraviolet divergences. This was shown to be the case for a certain class of rational 
functions of the fields, these being of the form 

Jv 

with the A, all real. 
We also have to accept that there are an infinite number of arbitrary constants, due 

to the fact that a new divergence is introduced in each order of g in G(x). It is useful 
to note that the infinite number of counter-terms we have found necessary is far 
fewer than would be required if the simpler method of taking ‘regular’ perturbation 
theory in all coupling constants and adding counter terms where needed were used. 
This is trivial to show, since the ‘regular’ perturbation theory graphs have divergences 
of arbitrarily high order, as is seen in the self-energy graph of order g2X2”+, arising 
from the interaction g( 1 + ; this has degree of divergence (2% - 4). It is through 
our careful, if somewhat ‘laborious’, discussion that we have been able to reduce the 
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number of these counter terms, and so the number of arbitrary constants. In  fact 
our manipulations are transparent enough to see that we are not able to make any 
further reduction in their number. I t  is possible that these are related when a 
symmetry, such as chiral symmetry, is present. 

It is difficult to extend the above result to higher-degree polynomials. In  any 
case it would not be expected to be possible to introduce a finite set of suitable counter 
terms if the polynomial Lagrangian had degree greater than four. Even if infinite 
numbers of counter terms for the polynomial part of the Lagrangian were acceptable 
there would still be two crucial difficulties. Firstly one may not be able to isolate 
divergences so that they lie in the neighbourhood of a single skeletal vertex, and so 
can be absorbed by a counter term localized at that vertex. This is essential for our 
method of work, otherwise it is possible that nonlocal counter terms are involved. 
The  other problem is that even if there is a localization of divergences it may still be 
very difficult to disentangle them; in other words there may be very difficult overlap 
problems. A typical localized divergence for a 754 polynomial Lagrangian is shown in 
figure 12; it seems very difficult to specify how to remove the subdivergences in an 

Figure 12. A typical divergent graph associated with a given skeletal vertex when 
the polynomial part of the interaction Lagrangian is quartic; every vertex of This 
graph can be collapsed down to the skeletal vertex with a resulting divergent 

constant. The disentangling of such a reduction process seems very difficult. 

unambiguous fashion, as was achieved in the last section for the 753 case. We remark 
that we restrict ourselves here to local counter-terms, that is, those constructed from 
the fields at a single point, since otherwise we would not expect the extension of the 
general properties of quantum field theories to nonlocalizable theories (Steinmann 
unpublished), described briefly in the introductory section, to be applicable. 

The final question is whether or not the techniques developed here are applicable 
to the chiral case, where derivatives are present. This does not appear to be 
immediately apparent, since the divergences are caused in this case by coalescing of 
skeletal vertices. We hope t o  return to a fuller discussion of this problem elsewhere. 
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Appendix 1 
We prove 

as follows. 

exp(j+)F(+)G(+)I,=, 

Appendix 2 
We expand 

G(x) = E 2 (3igS)"G,(x) 
7" 1 

(A.1) 

where G,(x) is independent of S ,  and we take the skeletal vertex to be x = 0. The 
substitution of this in the integral equation (13) gives 

As above 

= (2A2 + A1)6(x) + 2A Af2(x) + 2 LJ dy A(x)A(x --y)Af2(y)] . 
f 

lye  conjecture that the generalization of this is 

n-1 

G,(x) = An06(x)- 2 An'Fr(x)+F,(x). (A.3) 
r = l  

Since F ,  contains more than one graph if P > 2, the question is whether these 
graphs occur with the same numerical factors, within an overall constant, in G,. 
Substituted in (A.2), this gives, after some algebra, firstly equations for A,O, ... , A n n - l  
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and Fn in terms of Amo, ... , and F,, m < n 

(-4.5) 

A,' = An-lr- l+ 2 Asr-1L4,0 ( 2  6 Y < n-2 )  (-4.6) 
s + t = n - 1  

F ,  = 2K,-1+ 2 Lr,s  
r + s = n - 1  

(-4.7) 
where 

K ,  and L,*n being finite. Secondly we obtain the relations 

A n r + s - A n - s T - A n - r S -  2 AtrAn-tS+ 2 An-toAtrts = 0. ( A S )  
t , r < t < n - s  t , t > r + s  

If follows from (A.3) and (A.6) that 

A," = 2 A,",..., A m r T l o ,  Aoo = 1. (A.9) 
m,>O 

Z m i = n - s  

Since (-4.8) follows from this, we know that our conjecture was correct. We work 
in terms of AnO and F,, which are independent, since new graphs and divergences 
arise in each order of g, and make no further use of (A.4) and (A.7). Combining (A,l) ,  
(A.2)) (A.3) and (A.9) we obtain with A,O = B n *  
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